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1 Introduction

The goal of this project was to establish the feasibility of a high-voltage DC-DC

converter based on a rod-array triggered vacuum switch (RATVS) for the Space Solar Power

system. The RATVS has many advantages over silicon and silicon-carbide devices. The RATVS

is attractive for this application because it is a high-voltage device that has already been

demonstrated at current in excess of the requirement for an SSP device and at much higher per-

device voltage than existing or near-term solid state switching devices. The RATVS packs a

much higher specific power rating than any solid-state device and it is likely to be more tolerant

of its surroundings in space. In addition, pursuit of an RATVS-based system would provide

NASA with a nearer-term and less expensive power converter option for the SSP.

RATVS characteristics and advantages include:

• its electrodes exhibit very little wear and the switch has a low voltage drop

• it can operate much like a thyristor

• it is a fault tolerant device

• it can operate at high voltage. RATVS have already been demonstrated at 84 kV

• realization of a 100 kV, 10-20 kA RATVS is well within the reach of near-term

technology.

The objectives of the project were to:

• develop the electrical requirements for an RATVS capable of operating at 100 kV

and recover in the forward and reverse directions after passing up to 15 kA at the

required switching frequency and rates of current rise and fall

• develop an electrical system performance model of a DC-DC converter that can

operate at 100 kV and I GW using the Saber ® simulation environment

• develop an preliminary concept electrical design for an RATVS-based DC-DC
converter that can operate at 100 kV and 1 GW.

A section view of a commercially available version of the device is shown in figure 1. It

is a high-power vacuum switch that was specifically designed to operate in the diffuse arc mode.

The electrodes are arranged so that the self-magnetic field forces the discharge arc to remain

diffuse rather than to concentrate into constricted channels; therefore no anode spots are formed.

As a result, the RATVS electrodes exhibit very little wear and the switch has a low voltage drop.

In addition, the RATVS can operate much like a thyristor. It can be triggered to initiate forward

conduction and it will clear and recover following a current zero [1,2].

NASA/CR--2002-211562 1



RATVSsarefault tolerantdevices.Thatis, faultssuchasover-currentor currentreversal

areunlikelyto causeanRATVS to fail. Currentreversalhasbeenrepeatedlydemonstratedon a

25kV device[2]. In addition,RATVSsarelikely to belessaffectedby backgroundradiationand

theycanoperateoveranextremelywidetemperaturerange.

Oneof theprimary advantagesof theRATVS is its high per-deviceoperatingvoltage.

Off-the-shelfdevicesthat operateat 20 kV arereadilyavailable.The resultsfor experimental

tubesareveryencouraging.In experimentaldevices,withstandvoltagesof 460kV (impulse)and

240 kV (hi-pot) havebeendemonstrated.Operatingvoltagesin excessof 60 kV havebeen

demonstratedrepeatedlyin thesesamedevicesandthe highestoperatingvoltageachievedwas

84kV [11.

Operationof thedeviceat highvoltageleadsto anumberof advantagesoversolid state

devices.Forexample,in orderto achievea 100kV operatingvoltage,if thedeviceis ratedfor 3

kV, thenstandarddesignpracticewouldrequirethatat least67devicesbeplacedin series.Even

if PEBBandconverterstackingtechniquesareused,thesheernumberof devicesrequiredwill

leadto packaging,protection,control, andreliability problems.Thecostof sucha systemwill

also bequite high.In addition,characteristicmatchingtendsto be moreof an issuein high

voltagedevices.Whiletheproblemcanbesolved,closetolerancematching(whichis requiredin

longstack-ups)caneasilydoublethecostof aconverter.A furtherproblemstemsfrom thefact

thatlargersolid-statedevicesareslow.Forexample,a largediameter,high-voltagethyfistormay

turn on at lessthan500 A//zs andrequire500 #s or more to recover.RATVSs havebeen

operatedat over1,000A/txsandturnoff in lessthan5 #s.

Realizationof a 100 kV, 10-20kA RATVS is well within the reachof near-term

technology.However,severalissuesremainto beresolved.Theauthorsof thisproposalknow of

no instancewhereanRATVS hasbeenusedin a DC-DC converter.Furthermore,thedevice

mustbe force-or line-commutated.In addition,the RATVS hasnot yet beenoperatedat the

switchingfrequencyrequiredby theSSPapplication.Thecapabilityof thedeviceto operateat

very highrateof currentriseandits fast turn-offmitigatethis concern.In addition,the trigger

systemmustbeoptimizedandthedeviceitselfmustberedesignedto minimizemassandvolume

andto operatewell in space.Wearis not expectedto be an issuebecauseof the low required

operatingcurrent.Wearis strictlyafunctionof electrodegeometryandCoulombtransfer.
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1.1 Extension of previous RATVS and converter development

The specific RATVS upon which this proposed project is based was invented in the late

1970s by General Electric for use as an arc transfer mechanism in an interrupt switch. The device

was further developed and miniaturized by the USSR as part of a laser development program.

More recently, Maxwell Physics International (MPI) has been developing light-weight vacuum

switches for use in a 12 GW converter for rail guns and several other high-voltage, high-current

applications. In addition, The University of Texas Center for Electromechanics (UT-CEM) has

extensively characterized the Russian RATVS and designed two-way ac-DC converters for very

high-power alternators that employ RATVSs as the main switching elements. In addition, UT-

CEM is using a bank of RATVSs as the primary power transfer switch in a very-high-velocity

plasma spray system.

2 DC-DC converter circuits for space applications

This chapter gives an overview of the proposed Jones DC-DC chopper circuit [3], [4],

that will utilize rod array triggered vacuum switches to interface NASA's photovoltaic DC

source and transmission line to the microwave load. The Jones circuit was selected because of

its proven reliability and operation with forced-commutated power electronic switches

(specifically SCRs) that have essentially the same circuit properties as RATVS.

Example circuits are described, and Saber [5] simulation results are presented.

examples fit into the following three categories:

2.1

The

• preliminary examples with low voltage and low-to-mid power

• high voltage examples with modular one-twelfth power and full power

• an example for a proposed proof-of-concept prototype that can be built and tested
at UT-CEM

NASA requirements

The DC voltage produced by NASA's large photovoltaic array in space will most likely

be in ihe 100kV range, and at a power level of 1,000 MW. The utilization level, after the power

is transmitted over some distance, is expected to be either 40 kV or 6 kV, depending on th_ type

of microwave loads employed. Thus, DC-DC voltage conversion is essential on the load end to

reduce the voltage level to a low-ripple, constant output. Weight and reliability are the most

NASA/C_2002-211562 3



important features of the converter. Load voltage ripple should be limited to a few percent.

Parallel converters may be preferable to a single converter because of reliability and maintenance

considerations.

For purposes of this study, the load voltage is assumed to be 40 kV; 6kV operation would

likely require the use of a third coupled coil.

2.2. Overview of the Jones chopper circuit

The main feature of the Jones chopper circuit (fig. 2) is that it uses two switches to

produce the turn-on and turn-off switching required to achieve DC-DC buck conversion with no

turn-off devices. The switches are represented in the circuit diagram by SCR symbols. SCR1 is

the turn-on switch. SCR2, in conjunction with capacitor C, force-commutates SCR1 off to

complete the cycle. The practical duty cycle (D) range is 20% to 80%. The presence of coupled

coils L 1 . and /i2 (sometimes referred to as an autotransformer) measurably enhances the

reliability of the circuit. Assuming relatively low ripple voltage on the load, the ratio of load

voltage V L to input voltage E b is approximately D.

In practice, a shunt capacitor would be connected in parallel with DC source E b to

provide the ripple current, thereby permitting constant DC current to be drawn from the

photovoltaic source. Another possibility to provide constant DC source current would be to

reconfigure the circuit as a boost converter and use a third coupled coil to reduce the voltage

appropriately.

In the chopper portion of the circuit, coupled coils L1 and 4.,2 , and commutation

capacitor C must be properly sized. L 1 and I'2 are commonly chosen to have equal inductance

values. In the load portion, smoothing elements Lf and Cf are selected to control ripple in the

load voltage.

2.2.1 Design of the chopper portion of the circuit

When SCR1 is turning off, the energy stored in L 1

capacitor C. Thus, as a first approximation,

is transferred to commutation

. 1LII2=Icv _
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where I L is the pre-tum-off current flowing through coil L 1 (i.e., the load current), and VC is

the post-turn-off voltage across C when its current tries to reverse, causing diode D2 to open.

Rewriting the above equation yields

(2.1)

During SCR1 turn-off time tc , the voltage on C drops from V C to zero while its current

rises from zero to I L. Thus the approximate charge deposited on C during t c is limited to

CVc
• ILt c = CV C, so that t c -

IL

Substituting (2.1) into the above equation yields

• (2.2)

For a 100% safety factor in turning off SCR1, tc should be twice the turn-off time (i.e., tq) of

SCR1, or

• tc =2tq . (2.3)

The highest operating frequency is limited by turn-off time and should not exceed

1 1
• fmax - - (2.4)

20t c 40tq

Now, define Q as the ratio of peak capacitor voltage V C to input voltage E b ,

• Q =VC (2.5)
Eb

Q is an important design parameter since it, along with E b, determines the voltage ratings of

SCR1, SCR2, and C.

The design is completed by computing L 1 and C from the above equations. Substituting

(2.5) into (2.1) and solving for _1 yields
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Likewise,from(2.2),

./'7"- t c
• _/L 1 = (2.6)4?

Setting the above two equations equal yields

• QEb'_-C_ t c
IL .j-_, so that C becomes

• C= tclL (2.7)
QEb

Substituting (2.7) into (2.6) yields L1 and L2 ,

• L 1 = L 2 - t2QEb - tcQEb (2.8)
toiL I L

Summarizing, once Eb, I c, Q, and tq are known or chosen, then the remaining

component values and ratings can be computed using (2.3), (2.7), and (2.8).

2.2.2 Design of the load portion of the circuit

The purpose of Lf and Cfis to reduce the ripple voltage on load resistor R L. The

smaller the duty cycle D, the more filtering required. Lf should be large enough so that its

current is continuous for the smallest expected D and lowest expected load current IL . This will

be guaranteed if, in the worst case, the current in Lf ramps up from zero to 2I L (when SCR1 is

closed and diode D1 is closed), and ramps down from 2I L to zero (when SCR1 is open and

diode DI is open). The ramp-up time is DT, and the ramp-down time is (1- D)T, where T is

the converter period of operation. Examining the current ramp-down time, and applying a safety

factor of 2, yields

AI 0 - 2I L

• Lf 2AT 2(1-D)T -VL

SO

(1 - D)T (1 - D)
• Lf = 2VL = 2VL

2IL 2ilL
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In situations where input voltage E b , load voltage Vload, and duty cycle D are fixed, it is

helpful to rewrite the above equations as

(i - D)V L 2V 2 (1 - D)
• Lf = 2VL (2.9)

2YPL 2y&

where the frequency of operation of the converter is

1
• f=--

T

Cf should be selected so that load time constant RLC f >__5. Rewriting in terms of input
f

voltage and duty cycles yields

• Cf- 5 _ 5P L (2.10)
RLf V2 f

Preliminary examples with low voltage

Example #1 - Input = 1,000 V, 25 A (chopped), output = 400 V, 25 A, 10 kW;
frequency - l kHz

Consider the Jones chopper shown in figure 2 with the following specified values:

• Input voltage E b = 1,000 V

• Load voltage V L = 400 V

• Load power PL = 10 kW

• SCR1 and SCR2 tq = 20 gs

• Operating frequency 1 kHz

• Q=I.0

The calculation steps are then

• Duty cycle D- VL - 400 _ 0.40,
E b 1000

• From (2.3), tc = 2tq = 401.ts,

PL 10,000
• Load current I L - - - 25A,

V L 400
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¢ LoadresistanceR L - V2 - 4002 - 16f_ ,
PL lO,OOO

40 * 25 -6

• From (2.7), C - 1.-0-1i 0 (10) = 1.0¢xF,

• From (2.8), L1 = L2 - 40 • 1.0 • 1000 _jCl0-6'' 16001./// 1.60mH
25

2 • 4002 • (1 - 0.4) = 9.6mH ,
• From (2.9), Lf - 2. 1000.10,000

5 5P L 5 • 10,000
- - - = 312.5/2F .

• From (2.10), Cf RLf V_f 4002 • 1,000

The solved load voltage (using Saber time step 0.1 Its) is shown in figure 3. (Note - the design

procedure calls for C = IgF, but the circuit will not solve in Saber if C > 0.5#F. This problem is

believed to be due to numerical precision).

2.3.2 Sealing formulas

The above example can be scaled for other values of voltage and power. For example, let

Enew V_ew and PLZew be the new input voltage, load voltage, and load power, respectively.b '

Assuming fixed Q, f, D, and t c , the values computed in Example 1 can readily be scaled as

follows:

From (2.7)

pnew ( Trold "_2
• C new = C °ld • rL o| vL |

p_ld _V_ew)

From (2.8)

oold ('_znew ,_2
.'c ./"z. l• _-z(d
p, ew )

Interestingly, the product L1C remains constant.

From (2.10) and (2.9),
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•
t

•

The product LfCf remains constant.

If the power rises according to the square of voltage, then the component values do not

change. However, their current and voltage ratings will increase.

2.3.3 Example #2 - Modification of example #1 to boost the load voltage

The circuit of example #1 can be modified to boost the load voltage by including a third

winding on the autotransformer (fig. 4).

The load terms are adjusted for the new voltage, but constant power level. Compared to

example #1, the load voltage is boosted approximately by the ratio L3 The graph of load
L1

voltage is shown in figure 5.

2.3.4 Example #3 - Scaling of example #1 for input = 15kV,
output = 12 kV, 10 kA, 120 MW; frequency = 1 kHz

In this case,

duty cycle D Vl°ad 12,000- =_ = 0.80
E b 15,000

Assuming that tq and Q are unchanged, the calculation procedure yields

• t c =2tq=4Ogs

• Load current I L = PL _ 120 • 106 = 10kA (as given)
VL 12,103

• Load resistance R L - V2 - 12'0002 = 1.2ff2
PL 120 • 106

lOkA (chopped);

NASA/C_2002-211562 9



40• 10.6 • 10• 103
• C= =26.7,uF

1.0.15,103

40 • 10 -6 • 1.0 • 15 • 103
• L 1 = L2 = = 60pH

10•103

2 • 12,0002 • (1-0.8)
• Lf = =0.240mH

2 • I000 • 120 ° 106

5 5P L _ 5•100•106
O Cfr-- --

RLf V2f 12,0002 • 1,000
= 3472flF

The modified circuit is shown in figure 6. (Note - the design procedure calls for C = 26.7

/zF, but the circuit will not solve in Saber if C > 10/zF.) The solved load voltage is shown in

figure 7.

2.3.5 Example 4 - Reconfiguration of Jones chopper to construct a boost
converter with low ripple source current: input = 1,000 V, 10 A (low ripple);

output = 1,667 V, 6 A, 10 kW; frequency = 1 kHz

The Jones chopper has discontinuous source current. In photovoltaic applications, it is

important for power tracking purposes to hold the PV current ripple to a few percent. This can

be accomplished by adding a large shunt capacitor at the input of the converter to provide the

ripple current, or by operating the converter as a boost converter [6].

By moving the filter inductor to the input, and moving the freewheeling diode to be in

series with the load, the Jones chopper is converted to a boost converter. The circuit is shown in

figure 8.

The only significant differences between the design equations of the Jones chopper and

the circuit in figure 8 are that the pre-turn off current in (2.1) is now the source current (i.e.,

through filter inductor Lf ) instead of the load current.

1
• VL = E b • _ (i.e., the standard boost equation)

1-D

in (2.9), VL should be replaced with E b . The calculations are now

NASA/CR--2002-211562 10



• Duty cycle
1 _ V L _ 1667

1-D Eb 1000
- 1.667, so D =0.4.

From (2.3), tc = 2tq = 40gs

• Load current I L - PL _ i0,000 _ 6A,
VL 1667

V_ 1667 2
• Loadresistance R L - - - 277.992,

eL 10,000

• Sourcecu_ent I S _PL_ 10,000_10A,
E b 1000

• Frommodified(2.7), C- tclS C- 40el0 (10_6)=0.4flF,
QE b 1.0 *1000

• From modified (2.8), L 1 = L2 = 40 * 1.0 • 1000 tq0- 6 ) 4.0mH
10

2 • 1000 2 • (1- 0.4) = 60mH. Double this value to
• From modified (2.9), Lf = 2• 1000• 10,000

provide more smoothing on the source current, so Lf = 120mH

• From(2.10), Cf- 5 _ 5P L _ 5•10,000
RLf V2f 16672•1,000

= 18.0¢zF. Double this value to

provide more smoothing on the output voltage, so Cf = 36.0/.tF.

The load voltage and source current are shown in figures 9 and 10, respectively.

2.4 High voltage examples with modular one-twelfth power and with full power
converter

2.4.1 One-twelfth modular power converter suitable for paralleling

At full voltage, and one-twelfth power (i.e., 83.3MW), the load current and coil currents

are approximately 2 kA, which is a desirable modular size from the point of view of the

diameters of the conductors used in constructing the coupled coils. Furthermore, there are

reliability and maintenance benefits in having the total system power divided among several
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separate,paralleled,independentconverters.For thesereasons,plusthefact thatthe2kA gives

longlife to theRATVS,thismodularcircuit is believedto beagoodchoicefor NASA.

Theinitial designvaluesare

. Input voltage E b = 100kV

• Load voltage Vload = 40kV

• Load power Pload = 83.33MW

* SCR1 and SCR2 tq = 101.ts

• Operating frequency 2kHz (a more realistic rate than lkHz for RATVS)

• Q=I.0

Then, from equations (2.1) through (2.10),

• Duty cycle D- VL - 40,000 _ 0.40
E b 100,000

• t c =2tq=2Ogs

• Load current I L = PL _ 83.33 • 106 _ 2.083kA
VL 40 * 103

• Load resistance R L -_-V2 - 40'0002 - 19.2_
PtL 83.33 • 106

• C= 20*2,083 (10_6)=0.417pF
1.0 * 100,000

• LI=L 2 - 20 • 1.0 , 100,000 (10__6) = 960/.d-/
2,083

2,40,0002 , (1-0.4)
• L F = = 5.76mH

2 * 2000 • 83.33 • 106

• CF = _5 ___5PL = 5.83.33 • 106 = 130,uF

RLf VZf 40,0002 • 2,000

Reasonable estimates for the resistive and inductive parasitics, plus imperfect coupling between

the two coils (k = 0.9), are included in the simulation. By successively simulating the circuit

with Saber, it was possible to fine tune and lower some of the inductor and capacitor values from
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thosecomputedabove. Notably,L1 and L 2 were lowered to 10gH, L F was lowered to 3 mH,

and C F was lowered to 100 gF (fig. ll). Results are shown in figures 12 through 17.

2.4.2 Full power circuit

The schematic for a full power unit is shown in figure 18.

compared to the one-twelfth power converter are

The notable component changes

the mH values of L F, L I, and L 2 reduce by a factor of twelve, but the

corresponding current ratings increase by a factor of twelve

• the #F capacity of C F decreases by a factor of twelve

• free wheeling diode DfreeCUrrent increases by a factor of twelve

• RATVSs must be paralleled to increase their combined current rating to 25 kA

Except for the scale factors, the simulation graphs (though not shown here) are essentially the

same as for the one-twelfth power converter.

2.5 Proposed proof-of-concept prototype"

The concluding example is a prototype converter that could be built at UT-CEM and

tested using existing DC power supplies. The circuit would permit the long-term testing and

evaluation of RATVSs, plus the design and refinement of the coupled coils for relatively high

currents. The proposed circuit, after adjustments through successive Saber simulations, is shown

in figure 19. Simulation results are given in figures 20 through 25.

In addition to circuit parasitics, the 100 V forward drop of the RATVS, which is

negligible at 100kV, is included here because it is substantial compared to the 500V power

supply input.

3 Triggered vacuum switches

A vacuum switch is a switch that can generate and support an electrical discharge

although the pressure of the environmental medium is quite low. A switch of this type typically

operates with an ambient pressure no larger than 10.6 torr. Once the arc is established, the charge

carriers necessary for the electrical current are supplied by the electrodes themselves. Under the

influence of the discharge, the surfaces of the electrodes melt locally and vaporize emitting the

particles needed for sustaining the discharge. Therefore, a vacuum switch is truly a metal plasma
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switchsincethemetalelectrodesemit theelectronsandionsneededfor theelectricaldischarge

aswell as neutralparticles.A triggeredvacuumswitch (TVS) is one wherethe dischargeis

initiatedat a specificdesiredtimebyanappropriatetriggeringmechanismthatalsoprovidesthe

initial plasmadensity.

Electronemissionis themechanismat thebasisof theelectricaldischarge.Theresidual

backgrounddensityof chargecarriersin theinter-electrodegapis enhancedby electronsemitted

from the cathodeand by their ionizationof the neutral particlesleadingto an exponential

increaseof chargecarriers(avalanche).Thus,althoughbothanodeandcathodeactivelysupply

particlesto the inter-electrodeplasma,thecathodeis themoreactiveelectrodeandtheonethat

requiresmoreattention.

Vacuumswitchestracetheir existenceback to the late 1800's.Initially the interestin

themwasgeneratedbytheirusefulnessinmakingmetalliccoatingsbut,eventually,in the1920's

theoriesof electronemissionfrom metalswereworkedout andthevacuumswitch foundmore

andmoreusein highpowercurrentswitching.Until the late1960's,however,thevacuumswitch

wasavariantof lesserinterestthanthemorepopulargasfilled switches.

A realbreakthroughin thetechnologyof vacuumswitcheswasachievedby theresearch

teamat GeneralElectric in the 1970'swith the developmentof the diffused arc discharge

vacuumswitch.Theintentwasto maximizetheelectrodeareacoveredby thedischargesothat

the dischargewaskept in a diffusedmoderather thanconstricted.This loweredthe current

densityat theelectrodesandreducedconsiderablyelectrodewear.TheGEswitch [1] hascome

to beknown astheRod ArrayTriggeredVacuumSwitch (RATVS) andits design,with minor

variations,is still dominanttoday.Figure26 showsanexposedview of the internalpartsof a

switchof this type:the anodeandcathodeplatesatthe oppositeendof thevacuumchamberare

connectedto severalelectrodes,essentiallycylindrical in shape,that extendaxially and are

locatedon acircumference,sothatelectrodesof oppositepolarityalternate.Thus,theanodeand

cathodeof theswitch form two symmetricalandidenticalhalves.Figure27showsthecathode

half of a switchwith threecathodeelectrodes.Oncefully assembled,thethreeanodeelectrodes

completetherodarray.

Many performancefeaturesof the RATVS make the rationalefor its use quite

compelling:
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• with properchoiceof operatingpressureandinter-electrodegap,the switchcan
bemadeto operatein theleft branchof thePaschencurve,sothatit canwithstand
highvoltages.RATVShavebeenoperatedatseveralhundredsof kilovolts

• properelectrodedesignallows the switch to carry high currents(hundredsof
kiloamps)

• recoverytimeis typicallyshort,ontheorderof microsecondsor less

• thedeviceis quitecompactandlight-weight(e.g.a 25kV, 200kA switchis 150
mmin diameterand203mmin heightfor atotal weightof 7kg [7])

UT-CEMhashaddirect laboratoryexperiencewith RATVS, in particularwith devices

manufacturedin Russiawheremostof the recenttechnologicaldevelopmenthastakenplace.

TheseRATVS arenewversionsof thebasicGEswitchandaresoldin theU.S.A.byMaxwell

Laboratories,Inc.,underthepartnumberTVS-40.Theyareratedat 25kV, 100kA, and60Hz.

Fromthis first handexperience,severalpointsof interesthaveemergedwhich aresummarized

below[8].

• Switchrecoveryafterturn-offwasafunctionof bothpeakcurrentanddi/dt.Thus,
successfulrecoverywasobtainednearly100%of thetimeswhenthepeakcurrent
wasbelow20kA, butonly 20%of thetimeswhenpeakcurrentwasabove80kA.
Also, althoughsuccessfulrecoverieswith di/dt as high as 550 A/l.ts were
registered,nearly100%successfulrecoverywasachievedonly whendi/dt was
keptbelow100A/gs

• dv/dt did not seemto play a majorrole at leastup to valuesof 11kV/gs, The
additionof snubbercircuitsresultedin minorimprovements

• Operationof the devicesin parallel resultedin acceptablecurrentsharing(less
than 10% mismatch with sufficiently high anode voltage) but recovery
performancewasworse

• Operationin serieswassimilarto thatof thesingledevices

• The forward voltage drop across the switch exceededthe manufacturer's
specifications,especiallyfor short currentpulses,and increasedlinearly with
current

Theseperformanceissueshaveto bekeptin mindfor reliableoperationof theRATVS.It

is clear,however,from theseresultsthat,if theoperationof the switchesis limited to low peak

currentsandlow di/dtvalues,theconfidenceof successfuloperationis high.

A moredifficult issueis thatof expectedlifetime of theswitchesundercontinuousduty

operation,like theonein ourconverter.Theelectrodesin aswitcharesubjectto wearbecauseof

particlebombardmentandintenseheat.As was pointed out previously, the cathode in particular
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is subjectto erosionsinceit hasto providemuchof theplasmaparticlesto sustainthedischarge.

The longevity of the switch, therefore,is determinedby the ability of the electrodes,and

especiallythe cathode,to withstandthe demandingenvironmentof an electricaldischarge.

Operationawayfrom theconstricteddischargemodebut ratherin a diffuseddischargeregime

goesa longway towardlengtheningtheoperationallife of theswitch.Also reducingthecurrent

densityat the electrodesseemsa desirablegoal becauseit would reducethe probabilityof

formingcentersof intensemeltingandvaporizationcommonlyreferredto as"spots."

Experimentaldatafor continuousoperationof theRATVS arepracticallynon-existent.

Most researchseemsto haveconcentratedon low duty cycleservicelike currentinterrupters

(mostcommercialdevices),transferswitchesin energystoragetechnology,andnuclearfusion

applications.Thusresearchis neededto pushthe technologyin the realmof continuousduty

applications.

4 Component design for a modular DC-DC converter

The conclusions we have reached previously regarding the need to operate the RATVS at

a low current density for longer lifetime suggest the design of a converter made of identical

modules rated at a fraction of the total power that can be combined in parallel to provide the

overall rating required. Thus, the RATVS of each module will have to handle only a fraction of

the total current. This choice may be dictated also by considerations of overall system reliability

and ease of maintenance.

The number of modules into which the whole converter should be subdivided is certainly

negotiable, but it seems that in our case the number 12 results in a good combination of the

several variables involved. Obviously, the procedure outlined can be repeated if a different

number of modules is desirable. Therefore, let us proceed on the assumption that the 1 GW

converter will be made up of 12 equal modules, each with the following specifications:

• 100 kV voltage standoff capability

• 2,083 Acurrent switching

• 2 kHz operation

• 0.42 A*s percycle

• 83.3 MWpower
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Thedetaileddesignof eachcomponentin thecircuit of thisone-twelfthscalemodulewill

nowfollow.

4.1 Design of triggered vacuum switches for long life

Every time the triggered vacuum switches conduct current, their electrodes are called to a

very demanding application being subjected to particle bombardment and intense heat

generation. As a result of this, the electrodes tend to erode and their ability to perform can

eventually be impaired resulting in failure of the switch. It is important, therefore, to examine the

issues that impact the projected useful lifetime of the electrodes of a switch.

Electrode erosion is normally a surface phenomenon that can be attributed to several

mechanisms the most important of which are thermally driven. The heat generated within the

plasma column and within the electrode itself can make the material undergo a phase change by

melting it or vaporizing it. Liquid and vapor particles of the metal are then either removed, with

consequent net electrode volume loss, or at least displaced, resulting in scarring of the electrode

surface. Of the two electrodes the cathode is the one that erodes more and earlier, thus we will

confine our attention to it.

The problem of heat generation and conduction at the electrode surface has been

addressed analytically first by Belkin and Kiselev [9] under the assumption that the radial extent

of the electrode surface affected (the cathode spot) is much larger than the penetration depth in

the bulk of the electrode. This simplifies the problem to a one dimensional case and allows the

Joule heating of the electrode to be neglected to a first order approximation (this turns out to be

supported by the data for most metal electrodes of practical importance). They used the standard

solution to the heat diffusion equation and, with some simplifying assumptions, derived a simple

expression for the mass of molten metal Mm

• Mm- Vk '"I i(t) dt
3cT

rn 0

where the integral represents the total charge Q transferred to the cathode and

* Vk = cathode voltage drop (typically around 10 V for most materials)

• c = specific heat of electrode material

• Tm= melting temperature of electrode material
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• tp = time duration of the discharge pulse

• i(t) = current collected by the cathode

Of this mass a fraction k (erosion coefficient) is vaporized, thus the vaporized mass My is

simply equal to k Mm • The same authors showed experimentally [10] that the erosion coefficient

is pretty much constant for large values of Q. For small values of Q, however, k varies

considerably and undergoes almost a step change at some threshold value Qo below which it is

very small and close to zero. Qo is a function of the electrode material.

Although immediately criticized as superficial [11] and although using approximations

which do seem questionable, the Belkin-Kiselev formulation has one merit: it matches the

experimental evidence and allows a preliminary ranking of electrode materials in terms of their

ability to resist erosion. Table 4.1, showing some potential electrode material candidates ranked

in order of decreasing preference of the two significant parameters: the erosion threshold charge

Qo and the mass per unit charge My/Q eroded above this value.

Belkin [12] proceeded to make studies on an analog model of the cathode erosion

process. The model predicted that, if the heat flux to the electrode and its duration were below

certain limits, the melting of the electrode at the cathode spots remained a limited superficial

phenomenon resulting in minimal erosion. This allowed him to find an empirical relationship for

the onset of volume electrode melting which is reported below:

• -- m_

where q = heat flux at surface from plasma column

• k = thermal conductivity of electrode

• p = density of electrode material

If we equate q with the flux of Joule heat generated in the plasma in the vicinity of the electrode

(ignoring other sources or sinks of heat of no interest to us here, e.g. from chemical reactions) we

can write

V_i
• q-_--

A
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where A = effective area of electrodeaffectedby heat flux (baseof plasmacolumn).

Substitutingandrearranging[13],wefind theconditionfor onsetof electrodemelting:

Vk ) ''_-km

where j = i/A = plasma current density at the base of the plasma column

• km = melting onset constant

A similar expression could be written for the onset of vaporization but, since the limit is higher,

we do not need to concern ourselves with it here. Also, additional effects tied to skin depth

heating can be neglected by us because they become significant only for very short pulse widths

(few microseconds or less).

Therefore, as long as jZtp <km minimal electrode degradation is expected. If this limit is

exceeded, large scale erosion takes place and it is a fast rising function ofj2tp leading quickly to

the onset of massive vaporization as well. Our goal, therefore, is to design our switch so that this

limit is not reached.

This expression allows us to (i) generate an additional ranking of electrode materials in

terms of their values of km and (2) estimate the current carrying capability of a given electrode

Table 4.2 gives km for electrode material candidates listed in decreasing order of km.

It is to be noted that the Belkin formulation ignores the Joule heating within the electrode

proper. If electrode bulk Joule heating is a dominant process, another criterion based on a

different combination of material parameters applies [14] resulting in the ranking shown in Table

4.3, where cr is the electrical conductivity of the electrode.

Regarding the choice of the electrode material, the best present day technology seems to

be a composite material of Cu in a W matrix. The W matrix improves the performance of Cu

with respect to melting and vaporization and also adds mechanical strength to the otherwise

rather soft copper bulk. A composite alloy of 67% W and 33% Cu seems to give the best results

with erosion levels equal to one fifth that of pure Cu [15]. The addition of a small (3%) fraction

of LaB6 seems to improve erosion resistance even further [16].

An estimate of the current carrying capability of a W-Cu composite electrode gives the

following results: using an average value of km= 2 x 10 t3 AZs/m 4, for a 200 gs pulse width, we
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calculate a current density of j = sqrt(2 x 1013/.0002) = 3.2 x l0 s Aim 2, which for a current of

2,083 A results in an electrode area of 2083/(3.2 x 108 ) = 6.5 x 10 -6 m 2 = .065 cm 2. Even using a

factor of 5 to account for an effective area coverage of the electrode, because the plasma column

breaks into filaments (as suggested in [13]), this gives an electrode area of 0.33 cm 2. This is the

minimum area necessary for carrying the current of 2,083 A for one shot without incurring in

excessive electrode melting. It is rather small, which is encouraging. In order to repeat the same

current pulse every 500 Its we must examine more closely the additional demands on our

electrodes.

Let us estimate the thermal performance of a rod-array switch of the type we are planning

to use. Assuming twelve cylindrical rods for the cathode with H = 20 cm height and D = 2.5 cm

diameter, the effective area of the cathode plasma column is approximately

, A=12.21rDHl=251cm 2=.0251m 2
3 5

where we have also included the safety factor of 5 mentioned above. The RMS power flow input

to the cathode is Qm, ts = Vk*i*sqrt(0.4) = 10*2083*sqrt(0.4) = 13.2 KW. At steady state this is

the power that also must be radiated into space to keep constant temperature at the electrode.

With _ = Stefan-Boltzmann constant, _ = surface emissivity assumed to be about 0.8, To =

ambient temperature assumed to be 233°K, and with the radiating area Ar assumed to be equal to

ten times the effective electrode area, to account for possible radiating fins extending below the

electrode plate, we get for the radiating surface temperature T_ the value

1 1

13200= QaMs + To = _-233' = 1038
• Z 1 Lmr£ O. 10..0251..8.5.67.10 -8

This value is very close to the melting point of Cu and is obviously unacceptable.

Therefore, the electrode must be cooled with external means. If the rods are made hollow with an

inside diameter of d = 1.5 cm to allow for the passage of a cooling fluid at a temperature of 10°C,

for example, the temperature of the inside wall of the electrode will be approximately

• T_ D Q +T w 2.5 13200 oc=_m = _-10 = 97
d Ah 1.5.0251-10000

and that of the outside wall will be

NASA/CR--2002-211562 20



+ 97+13200°251n   115oc
A k _,d) .0251 386 _,1.5)

This calculation does not pretend to be more than a ballpark estimate of the order of magnitude

of the temperatures involved. Its intent is to establish that, with the choice of a suitable coolant

(e.g. NI-I3) at an appropriate flow rate and pressure, it should be feasible to keep the electrodes at

a reasonable temperature and keep their erosion to a minimum.

As a double check on our design, we can see how our switch compares to the onset of

large scale electrode melting:

• J2tP _..0--_) .0002 = 1.38-106 << 2.1013 AZs/m 4 = k m

The conceptual design of an electrode rod with forced convection cooling is shown in figure 28.

The estimate above was based on a hypothetical switch with twelve cathode rods. This

switch, of course, can also be realized with the parallel operation of multiple switches with fewer

rods, for example, four switches with three rods each. These switches will be able to be operated

continuously at the duty cycle specified with minimal erosion at the cathode electrode rods.

The actual calculation of electrode life is not possible at present for lack of data. Belkin

himself seems to imply that electrode life should not be a concern if the km limit is not exceeded.

Quoting directly from him [12]:

In that range of q*sqrt(tp) values, one can expect that the specific life will not depend on

the discharge time. The lack of time dependence for life with small q*sqrt(tp) has been
confirmed experimentally.

Unfortunately no detail is given for the experimental verification mentioned. Since the

Belkin paper, no additional detail has surfaced in the literature that could shed light on this issue.

Reference [17] mentions expressly "spotless cathode operation" as an item receiving attention in

the last 25 years but does not elaborate further and concentrates on the progress made in the

experimental and theoretical description of the cathode spots. The lack of data is believed to be

more the result of the fact that commercial interests in the use of vacuum switches have been

concentrated in the area of light duty cycles (e.g. current interrupters, energy storage switching,

nuclear fusion) than of difficulty in performing the research.

Another option available for the design of electrodes with long life is given by copper

electrodes clad with tungsten. In this case, the tungsten outer cover is best for handling the
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electrodeerosion,which is a surfacephenomenon,andthecopperbulk is bestfor reducingthe

Joulelosses,whichis avolumephenomenon.

Normally,anodeerosionwouldalsobe of concernbut it occursat higherstresslevels

thancathodeerosion.Thus,if wearesuccessfulin minimizingcathodeerosion,anodeerosion

will alsobeminimized.

Anotheritemof greatimportancefor thelifetime of anRATVSis its triggermechanism.

This is realizedmostcommonlyasa smallelectrodeembeddedin thecathodeelectrodeand

separatedfrom it by a dielectric.This triggerelectrodeis pulsedwith a mediumvoltagespike,

typically1-5KV in magnitudeandpositivewith respectto thecathode,sothatasmalldischarge

is initiatedbetweenitself andthecathode.Thisdischargeprovidessufficientplasmadensitythat

the voltageacrossthe maingapbreaksit down andthe main currentconductionstartsin the

switch.Conductionwill continueuntil currentacrossthemaingapdropsto zero.Obviously,it is

importantthatthetriggermaintainitscapabilityif wewantreliabletriggeringof theswitch.

Threeitemsareof interestin regardto the lifetime of thetriggermechanism.Firstof all,

the triggerelectrodeandtheswitch'scathode electrode form the anode-cathode pair of a mini-

switch, thus all that has been said for the electrode erosion of the main switch can be repeated

here. If the cathode is designed to minimize erosion during the conduction across the main gap, it

will certainly be sufficient to avoid erosion during the conduction of the smaller trigger current.

It is important, however, to make sure that the trigger electrode is designed so that itself operates

in a diffused discharge mode. This is insured by proper design of the geometry of the trigger

electrode.

The second item to consider is the longevity of the dielectric interposed between the

trigger electrode and the cathode. This dielectric degrades under the action of the trigger arc as

well as of the main discharge if it is exposed to it.

Thirdly, the trigger mechanism must be shielded from the debris that results from the

main arc otherwise it may short out to the cathode.

Alternatives to using a smaller vacuum switch as the trigger for the main switch exist but

add complexity to what is otherwise a very simple device. For example, optical triggering by

means of laser light is a possible option, albeit more complex.
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An additionalitem regardingthetrigger devicemust beconsidered,althoughit is not

relateddirectlyto thetrigger'slifetimebutratherto that of themainswitchelectrodes.Themain

dischargestartsin theproximityof thetriggerelectrodebecausethatis wheretheinitial plasma

densityis generated.Thus, it is importantto locate the trigger electrodeso that a diffused

dischargeis favoredfrom thestart,avoidingaconstricteddischargeevenif only a transientone

[18].Onewayto accomplishthisisdescribedin [19].

Therefore,we canconcludethat appropriatemeansto minimize cathodeerosionand

trigger degradationhavebeenidentified_nd can be implementedso that the lifetime of the

vacuumswitchesshouldnot limit severelytheoperationof theDC-DCconverter.

4.2 Design of the filter inductor and of the autotransformer

The design procedure used for the filter inductor and for the autotransformer is the one

given by Grover [20]. Several optimization procedures can be followed with special attention

given to one or two (but probably not all four) of the following variables:

• weight

• physical size

• energy loss

• cooling needs

A preliminary design optimizing the weight and keeping the current density below 170 A/cm 2

(thus imposing a condition on maximum energy loss) yields the data shown in Table 4.4.

Additional details can be obtained from figures 29 and 30.

Obviously different variations are possible and the designs above give just an indication

of what can be expected.

5 Potential technological developments

5,1 The rod array triggered vacuum switch

Several possible developments can be foreseen in the design of the RATVS that would

make it a more reliable and robust device. Many options have already been discussed previously

in the section on the design of a one-twelfth sized converter. Below is a summary with few

additional comments.
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• optimizedelectrodegeometry.It is not a foregoneconclusionthat a cylindrical
electrodegeometry,or possiblyaconicalsectionwith a smallslantingangleis the
bestone.Recentdevelopmentsseemto favoratrapezoidalelectrodecrosssection
[21]

• advances in electrode material

• improved trigger design

• alternative triggering mechanisms

• optimized electrode cooling

A theoretical projection for the lifetime of an RATVS will remain a difficult task

especially because the experimental data in the operational regime of interest to us are scattered

or non-existent. Cautious extrapolations of existing data on copper electrodes with some of the

design improvements described previously lead to an expected lifetime of 300-400 hours for

RATVS used in our converter. For W-Cu(LaB6) electrodes this time could be extended by a

factor between 5 and 10 giving a projected lifetime window of 1,300 to 4,000 hr for the RATVS

in our converter ([14], [15], and [16]) . All this can be achieved pretty much with present day

technology and experimental information.

One item to keep in mind is that when we talk about RATVS lifetime we are not

necessarily addressing a catastrophic phenomenon that happens suddenly at one point in time

after which the RATVS is inoperable. The only mechanism of this type in an RATVS is the

triggering. Electrode erosion instead results in a progressive reduction of performance and only

in extreme cases leads to sudden failure. Thus, the RATVS is a fairly robust and tolerant device

that affords some flexibility in maintenance procedures.

5.2 The filter inductor and the autotransformer

Design improvement in this area can be anticipated as a result of the following:

• smaller inductance values resulting from a more optimized circuit design

• more in-depth optimization of the inductor designs per se

• optimization of the electrical, thermal, and mechanical functions resulting from

experience gained at the Center for Electromechanics of the University of Texas

at Austin in other programs (e.g. cooling techniques from the Electric Gun

program, composite material containment from the Electric Gun and NASA

Flywheel Battery programs)

A weight reduction of 30-50% can reasonably be expected based on the items above.
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6 Summary and Recommendations

1. The design of an RATVS-based DC-DC converter is feasible and robust

2. System mass with present-day technology is approximately 20 T

3. With modest design optimization and technical development a mass reduction of 30

to 50% is projected

RATVS life is an issue that must be addressed. Feasible solutions have been

identified and the risk of their implementation is moderate.

5. The construction and life-testing of de-mountable RATVS with extended lifetime

should be the next step in the development of the converter. These devices will

incorporate the improvements in material, cooling, and triggering that have been

discussed above. It will be possible to make projections from these tests on reliability

and maintenance requirements of the switches.

6. In parallel with item 5, it will be worthwhile to investigate the possibility of operating

in space the RATVS in an "open bottle" configuration (no enclosure). This would

allow the direct replacement of the cathode simplifying maintenance.

7. A proof-of-principle converter incorporating RATVS should be designed, built, and

tested. The Center for Electromechanics has in place the infrastructure and equipment

to test one such converter designed for 500 V, 1500 A, 2 KHz. Since issues associated

with current are crucial insofar as switch lifetime is concerned, more so than voltage,

this converter will be very useful in assessing the effectiveness of the RATVS design

(the switches would be tested at -75% rated current).

8. Proceed with the detailed design of a full-scale 100 kV - 40 kV, 25 kA, 1 GW, 2 kHz

RATVS converter to determine overall system performance, size, weight, reliability,

and manufacturability.

.
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Table 1. Electrode candidate materials in order of initial preference

Material Qo [C] M,,/Q [mg/C]

Ti 35 2.6

Mo 33 3.0

Cu 15 3.2

(W: no data)

Table 2. Electrode candidate materials in order of km

Material km (× 1013 A2s/m 4)

W 3.82

Mo 1.70

Cu 1.22

Ti 0.31

Table 3. Electrode candidate materials in order of contuctivity

Material (x 10 lz JVZ/g2/mS/2)

Cu 3.5

W 2.3

Mo 1.5

Ti 0.5

Table 4. Preliminary design specifications

Filter Autotransformer Autotransformer

Inductor Primary Secondary

Inductance 3 mH 10 gH 10 laH

Resistance at 130 °C 8.9 mr2 0.3 mff2 0.3 mff2

Rated current 2,083 A 2,083 A 2,083 A

Loss at 130 °C 38.5 kW 1.3 kW 1.3 kW

Conductor weight 741 cg 26 kg 26 kg

Expected temperature rise 90°C 60°C 30°C
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Figure 1. Commercially-available RATVS
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Figure 5. Load voltage for 10 kW Jones chopper in figure 4
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Figure 10. Source current for 10 kW Jones chopper-booster of figure 8
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Figure 12. Load voltage for one-twelfth power converter (entire simulation)

NASA/CRy2002-211562 33



42

40

38

vl

I I
0.02 0.025 0.03

Time (s)
88030017
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Figure 14. Filter inductor LF current
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Figure 26. Open view of a rod array triggered vacuum switch
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Figure 27. The cathode half of a six electrode RATVS (from [1])
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Figure 28. Conceptual design of the rod of an electrode with forced convection cooling
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